
Qualitatively analogous results are obtained in tests with water under the same condi- 
tions but with a lower initial temperature (13.8~ however, the effect here appears more 
definitely, the temperature drops by 5.5~ maximum, and the pressure to --2 MPA. This fact 
is in agreement with the Briggs results which established that the limit bulk strength gradu- 
ally diminished for water in the 5-50~ range as the temperature rose [i]. 

Recording the pressure and temperature at the point D2 at a 5-m distance from the cutoff 
yielded qualitatively analogous results. 

Tests were also conducted with water with a surfactant added. The pressure reduction 
here is somewhat smaller and there is no negative pressure effect. This result agrees with 
the Frenkel theory about the role of surface tension in the appearance of a negative pres- 
sure. Tests also showed the significant attenuation of the effect as the percentage gas 
content increased in the flow. 

Analogous results were obtained in tests with oil. A considerable temperature drop, up 
to 10QC, was here observed during the existence of the negative pressure. 

The nonstationary effect pinpointed permits utilization of real fluid systems to obtain 
and investigate negative pressures, while great strictness relative to the fluid purity must 
be maintained in the static approach. This circumstance affords the possibility of producing 
and using brief negative pressures in many engineering processes. 
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STATISTICAL THERMODYNAMICS OF SCHOTTKY DEFECTS IN MOLECULAR 

AND IONIC CRYSTALS 

~. T. Bruk-Levinson and A. V. Zakharov UDC 548.4:536.75 

A statistical thermodynamics of point defects is constructed that permits taking 
account of the influence of vacancies on both the thermodynamical and structural 
properties without involving any experimental information. 

Q 

The study of the thermodynamics of point defects, and particularly of vacancies, is an 
important problem in connection with the influence they exert on the macroscopic properties 

of a substance [i]. 

A sequential description of the properties of defects should rely on the microscopic 
theory whose problem is to describe the local structure of the material in the neighborhood 
of the defect, on the one hand, and to give a description on this basis of the thermodynamical 
properties of a crystal with defects, on the other hand. 

An approach of such a kind, based on the statistical method of conditional distributions 
[2], was developed earlier [3] and applied to an analysis of the equilibrium concentration of 
vacancies [4] in a molecular crystal. In this paper results are presented of systematic com- 
putations of the energy of vacancy formation for a molecular crystal, and in addition, the 

theory is extended to ionic crystals. 
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STATISTICAL SCHEME 

Let us consider a multicomponent system containing N~ particles of the species ~ (~ = i, 
h 

N~ =M. 
c~= I 

..., K), where We take the potential energy of such a system in the form 

l h N~ N~ 

2 ~ , ~ = 1  i = l ~  ] = l ~  

Here  g~ a r e  c o n f i g u r a t i o n  v a r i a b l e s  t a k i n g  on t h e  v a l u e s  0 and 1 and b e i n g  i n t r o d u c e d  as an  
e q u a l l y  l i k e l y  " c o m p o n e n t "  f o r  i n c l u s i o n  i n  t h e  v a c a n c y  scheme .  

L e t  us d i v i d e  t h e  volume V o c c u p i e d  by t h e  s y s t e m  i n t o  M e q u a l  c e l l s  w i = V/M, and l e t  
us l i m i t  o u r s e l v e s  t o  t a k i n g  a c c o u n t  of o n l y  t h o s e  s t a t e s  i n  wh ich  n o t  more  t h a n  one p a r t i c l e  
i s  i n  e a c h  c e l l .  

On t h e  b a s k s  o f  t h e  Gibbs  d i s t r i b u t i o n ,  o n e - ,  t w o - ,  e t c .  p a r t i c l e  d i s t r i b u t i o n  f u n c t i o n s  
F i ( i a ) ,  F i j ( i a ,  J s ) ,  . . . c a n  be  i n t r o d u c e d  t h a t  g o v e r n  t h e  p r o b a b i l i t y  d e n s i t y  t h a t  a p a r t i c l e  
of the species ~ will be near the point i a C wi or two particles of the species ~ and B will 
be near the points i a ~ w i and j~ E~wj, etc. [2]. These functions can be represented in the 
form [5] 

F, (i~) = c~exp {--  ~?; (i~)}, (2) 

Yu (i~, ]~) = c~ @ exp {-- ~ [ ~  (i~, ]~) @ ~;~ (i~, j~)]}. (3) 

Here  

(MFP) 

c~ = no~ / ~ d ( i ,J exp { - -  ~flo, ( i~)}, n~ = Nc,,/M; 
i 

M 

qq (i~) = ~ ~ ;(&); , 

M 

~.(i~, ]~)= ~ ~. ,(i~, i~) 
; ~ i , ]  

The quantities defined by 
and can, in turn, be expressed in terms of the distribution functions 

K 

. . ,  V~J~ (i~, F; (iD ' 
"~=1 l 

K 
v;~%,;(i~, i,~)= x,, L b  [ d(&)v~J'(i~, g) F~;,(&, ;~, Iv) 

? = I  

(4) 

(5) 

(6) 

(5) and (6) have the meaning of potentials of the mean forces 

(7) 

(8) 

This latter expression connects the two-particle function (3) with three-particle functions, 
while system (2)-(8) is the beginning of an infinite chain of equations. Functions (2) and 
(3) are interrelated by strict relationships: 

K 
F i ( i ~ ) =  ~ . f d ( j ~ ) F u ( i ~ ,  ]~). (9) 

The free energy and the configuration integral of the system have the forms 

1 
F -  In Q:u, 

(lO) 
K m 

QM= H H {[.t'd(i=)exp{--~P*(i.)}]/n.} ~ '  
c~=l i = 1  i 

and t h e  MFP mus t  be  known f o r  t h e i r  c o m p u t a t i o n .  S e e k i n g  t h e  MFP i s  a s s o c i a t e d  w i t h  t h e  
closure procedure consisting in the expansion of the MFP into irreducible parts [6] 

(11) 

167 



ao~~,ao 

q5o 1,oo 

7~ b 

qee (02 ~,oa 11o u 

Fig. i. Dependence of the vacancy concentration on: a) the 
temperature for different values (indicated on the right) of 
the distance between nearest neighbors; b) the distance between 
nearest neighbors for different values of the temperature. 

with the subsequent discarding of the quantity m. 

Consequently, the binary functions (3) take the form 

Fij (i~, ]~) = exp {~ [~i ,i (i~) + ~i,i (]~) - -  ~ (i~, JB)I} Fi (i~) Fj (]~). (12)  

Substituting this expression into (9) results in a closed system of nonlinear integral 
equations for the MFP 

K 

exp {--  ~ i  ,i (i~)}= ~ .t d (j~)exp {~ [%,i (]~) --  ~ (i~, /~)]} Fj (1~). (13)  
~ = 1 ]  

L e t  us now e x a m i n e  a p p l i c a t i o n  o f  t h e  g e n e r a l  s cheme  to  s p e c i f i c  s y s t e m s .  

VACANCIES IN MOLECULAR SYSTEMS 

A molecular crystal with vacancies can be considered as a two-component system containing 
N particles and No holes, N + No = M. For the formal passage from the described multicomponent 
system to a system consisting of particles and vacancies, we should set ~ = i for u, corre- 
sponding to the particles, and ~ = 0 for the vacancies. In this case (i0) goes over into 

M 

Q ~ =  I-[ {[~ exp{--~%(i)}]/nt~(1/n~ (14) 
i ~ l  i 

where n + no = l, n = N/M, and the integral equation for the MFP takes on the form 

exp {-- ~% ,i (i)} = no ~ .I d (j) exp {~ [~j,i (]) -- @ (i, J)]} Fj (]). (15) 

i 

The quantity no is the vacancy concentration and is unknown, and can be sought from the 
condition of the minimum of the thermodynamic potential G = F + PV. We consequently have [4] 

no = exp {--  ~ [ < % (i) > q- Pwl}, (16) 

where the angular brackets denote taking the average by using the one-particle function of an 

ideal crystal, and 

0 ~  (i) E 
, ~ ( i ) -  o n ~  n~ (17) 

We now turn to solving the integral equation (15). The smallness of the vacancy con- 
centration permits seeking the solution in the form of a series in no, limited here to linear 

terms 

�9 i ,i (i) = ~ j  (i) + no,~ ,~ (i). (18)  

Then (15) reduces to two systems of integral equations: nonZinear 

exp l - -  ]3~Pt,/(i)1 --= < exp {[3 [~*,~ (j) - -  @(i, /)l} >, (i9) 
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TABLE i. 

Formation; T/e = 0.668, R/r = 1.1344 

Vacancy Concentration and Gibbs Potential for Vacancy 

Source I n~176 AG/e=--O ln no II Source I n~ AG/8=--@ lnn o 

5,65 [~21 1,~5 
6,14 This paper 0,88 
6,20 [19] 1,64 

[9] I 2,1 [~01 ~ ],02 
[~1] 0,93 

6,00 
6,24 
5,84 

which agrees with the system of equations for an ideal (vacancy-free) crystal [7], and linear 

~i , i ( i )  = 1 - - e x p  [ ~ i  (i)] {1 - -  ~ < [~j ( ] ) - -  ~i.~ (])] exp {~ [ ~  (])- -~( i ,  j)]} > } - - ~  < ~ ( [ )  > .  ( 2 0 )  

In the crystalline state the one-particle function has a sharp maximum at a lattice site, 
which permits evaluation of the integral in (19) and (20) by the Laplace method [8]. Taking 
account of the first two terms of the asymptotic, we have for (19) [7] 

= [O - - [ I n  (1 - -  r)]/~]/2, g = ( 2 ~ " g  - -  ~ a ) / 2 ~  (1 - -  F), 
(21)  

k~* = A~ + ~g~ + g [ ~  - -  2~ (K § ~ a g ) ] / ( 2 ~ "  - -  ~a), 

w h e r e  A i s  t h e  L a p l a c e  o p e r a t o r ,  ~a = ~ ( a )  + 2 ( r  --  ~ ' / R ) / R ,  r = ~ ( " )  + 4 } ( ~ ) / R ,  K = ( r  + 
2(0'/R) ~, ~ E ~*i,j(O). g ~ O' -- k, V~* = kR/R, R is the distance between nearest neighbors, 
whose number is z, F = (A} -- A~* -- 8ga)/2o~ ~ = zA~*/3, the values of all the quantities are 

taken at the sites. 

To the same accuracy the system (20) is reduced to a system of algebraic equations 

Ai~*~=Bi (i, ] =  1, 2, 3), ( 2 2 )  

where 

B~ = z (1 - -  exp ~ ) ;  B~ = -- ~k exp ~ ;  Ba = -- z~ (A~* + ~k z) exp B~; 

An = 2~; AI~ = - -  z~/~ ( 1 - -  p)l / 2 ; Aa, = ( 1 - -  zP)/2o (1 - -  P) I / 2 ; 

A21 = (z - -  1) [~gZ + ~ (~a - -  2~gO")/2~(1 - -  P)l/q/z; Az2 == ~ [1 § (~gZ __ ~")/~ (1 - -  F)1/2]; A2a = (z - -  1) ~g/2zo(l --  F)1/2; 

Aal = (z -- 1){~ 2 (A~ -- A~* -- ~gZ) _ ~ [~ _ 2~ (K + bag) + 

+ 2~ZgZ~"]/2o (1 - -  F) ~/2}; Aaz = z~ (~gP/2~ - -  ~a -+ 2~g~")/~ (1 - -  F) ~/2; 

Aaa = ~ [1 - -  (z - -  1) r/(1 - -  r ) 1 / 2 1 .  

Specific computations, whose results are represented in Fi$. I, were performed by using 
the Lennard-Jones potential (6)-(12) (c/k = I19.8~ r = 3.405 A). 

Unfortunately, a systematic comparison of the results obtained with the results of other 
authors is often made difficult either by the incompleteness of the initial parameters men- 
tioned there (for instance, the temperature dependence of the vacancy concentration is given 
without indicating the density or pressure at which it is calculated) or by utilization of 
other potentials. The greatest quantity of data is available for argon at T = 80~ and R/r = 
1.1344 (Table i). The first three values have been obtained by the Monte Carlo method, the 
fourth by dynamical theory, the fifth is the result of this paper. The closest agreement is, 

as is seen, with the paper [12], where the method of "overlapping distributions" [13, 14] is 
used in the Monte Carlo computation, which has a number of advantages over the approaches 
in [9, i0]. Meanwhile, all the results are sufficiently close, indicating their adequate 
reliability. 

SCHOTTKY DEFECTS IN IONIC SYSTEMS 

The condition of complete electrical neutrality, according to which the strict equality 
between the quantities of positive and negative charges should be used, imposes specific 
constraints on Schottky defects in ionic crystals: they can be formed only by vapors. An 
ideal (vacancy-free) ionic crystal can be considered as a binary alloy consisting of ions of 
two species that remains completely ordered down to the melting point [15]. 

From the viewpoint of the statistical scheme described in the first section, an ionic 
crystal is a three-component system consisting of ions of two species and vacancies which 
are understood to be the unfilled sites of the crystalline lattice. The singularities in- 
duced by the condition of electrical neutrality and complete ordering appear in the fact 

169 



5o  I . ! 

_ 0 i n n  ~ .... ] 

~oo,___ L~-----i 

::o ~' 

3 7 6 

Fig. 2. Dependence of the energy of Schottky defect 
formation on a)the distance between nearest ions of 
different name for different temperatures; b) the tem- 
perature for different distances (in units of the sum 
of ionic radii). 

that, just as an ideal crystal, a crystal with defects consists of two imbedded sublattices, 
each of which contains ions of just one sign , but part of the sites in the sublattices is 
not filled, where the number of empty sites in both sublattices is exactly equal. 

Let us use Greek letters for the positive ion, and Latin letters for the negative ion 
coordinates. The total number of sites is M = N+ + N_ + 2No. The free energy has the form 

! 
F = - -  ~ lnQ M, 

QM = ( QJn+)N+ (Q~/n-)N- (1/2n~ (24)  

n+ = N+/M,  n_. = N /M,  n o = No~M, 

and t h e  s y s t e m  (12)  r e d u c e s  t o  f o u r  i n t e g r a l  e q u a t i o n s  

exp [ - -  6%,~ (~)] = no + S d (i) exp {8 [~  ,~ (i) - -  O (~, i)]} Fi (i), 
i 

exp [--  ~%,~ (~)] = no + f d (6) exp {6 [%,~ (6) - -  O (~, ~)]} F~ (6), 

(25) 
exp [--  6% ,~ (i)] = no + J d (~) exp {6 [%,~ (~) - -  ~ (i, ~)]} F~ (~), 

exp [--  6~i ,s (i)] = no + .! d (]) exp {6 [~s ,i (]) - -  ~ (i, i)1} Fj (i). 
/ 

We again seek the solution in form (18). Then system (25) reduces to eight integral 

equations: four nonlinear of the type (19) and four linear of the type (20). The same 
reasoning relative to the maximum of the one-particle function permits utilization of the 
Laplace method here also, whereupon the integral equations reduce, respectively, to a system 
of transcendental equations of the type (21) and linear algebraic equations of the type (22). 

As should have been expected, the main distinction of the system obtained is associated 
with the Coulomb energy [15] which it is impossible to take into account by restriction to 
the nearest-neighbor approximation. Although it enters in screened form in equations of the 
types (21) and (22) the large value of the Coulomb energy {as compared with the short-range 
repulsion) results in the need to take account of several coordination spheres; the contribu- 
tion of the Coulomb interaction is actually taken into account until it is commensurate with 

the short-range contribution for the nearest neighbors. 

The expression for the Schottky defect concentration in an ionic crystal has formally 
the same form as (16) for the molecular crystal with the difference, understandably, that the 
values in the exponential are determined by the solution of the system (25). It is also 
obtained from the condition of the minimum of the Gibbs free energy. 

Specific computations are performed for the NaCI crystal. The interaction potential was 
selected in the Born--Mayer form [16] with the addition of Coulomb energy. Results of the 
computations are represented in Fig. 2. 
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TABLE 2. Vacancy Concentration and Gibbs Po- 
tential of Vacancy Formation in NaCi; T = 
II00~ P = 0 

Source No/M AG (eV) 

[I7] 
This paper 

7,9.10 - 4 -  6,8.10 .5  
8,13.10 -4 

0,225-- 0,3015 
0,2237 

A comparison with results obtained for a NaCI crystal at the melting point and zero ex- 
ternal pressure in [17] is presented in Table 2. The agreement should be considered good. 

In conclusion, we examine the influence of the vacancies on thermodynamics. From (14) 
and (16) an expression follows for the free energy of a crystal with vacancies 

F = F o - - N o [ ( ~ ( 0 )  +Pw--@], (26) 
where Fo is the free energy of a crystal without vacancies. Expanding this expression~ the 
contribution of vacancies to all the thermodynamic characteristics of the crystal can be 
computed. 

NOTATION 

~, reciprocal temperature; F, Helmholtz free energy; G, Gibbs free energy; ~, potential 
of the mean forces; no, vacancy concentration; and ~(i, j), interparticle interaction potential. 
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